
Applying Formal Methods to an Information Security Device:

A Case Study�

Presented at the NATO Symposium on Protecting Information Systems in the 21st Century,

Washington, DC, October 25-27, 1999

James Kirby, Jr. Myla Archer
Constance Heitmeyer

Code 5546, Naval Research Laboratory, Washington, DC 20375

fkirby, archer, heitmeyerg@itd.nrl.navy.mil

Abstract

One approach to assuring information security is to
control access to information through an appropriately
designed device. A cost-e�ective way to provide assur-
ance that the device meets its security requirements is
to detect and correct violations of these requirements at
an early stage of development: when the operational re-
quirements are speci�ed. Once it is demonstrated that
an operational requirements speci�cation is complete
and consistent, that it captures the intended device be-
havior, and that the operational speci�cation satis�es
the security requirements, this operational speci�cation
can be used both to guide development of implementa-
tions and to generate test sets for testing implemen-
tations. This paper describes the application of the
SCR (Software Cost Reduction) requirements method
and the NRL's SCR* toolset, which includes a set of
veri�cation and validation tools, to a US Navy commu-
nications security device. It reports on our success in
proving that the operational requirements speci�cation
satis�es a set of security properties. The paper also
discusses the practicality and cost of applying formal
methods to the development of security devices.

1 Introduction
Many studies (e.g., [5]) have emphasized the impor-
tance of discovering and eliminating
aws in a sys-
tem at the earliest possible stage of development: the
requirements phase. The application of mechanized
formal methods can expose many errors that humans
miss in inspecting even the most carefully crafted re-
quirements speci�cations [22]. A formal method is a
mathematically-based method for the precise speci�-
cation and analysis of systems and devices. Associated
with a formal method is a formal speci�cation lan-
guage with a well-de�ned semantics. A mechanized for-
mal method is one having, at the very least, computer
support for checking speci�cations for well-formedness,
i.e., conformance to the syntactic and semantic re-
strictions of its speci�cation language. To provide in-
creased con�dence in the correctness of the require-
ments speci�cation, formal techniques which automat-
ically check the speci�cation for critical application

�This work is funded by the O�ce of Naval Research and
SPAWAR.

properties, such as security properties, are also valu-
able. Such techniques may be encoded directly as part
of the mechanized formal method, or they may be pro-
vided by an interface to an existing technique, such as
a mechanical theorem prover.

Prior to analysis by mechanized formal techniques,
a requirements speci�cation must be represented in
some formal speci�cation language. Sometimes, this
representation combines an operational requirements
speci�cation|e.g., a speci�cation that represents a
system as a state machine|with a property-based
speci�cation describing the required system properties.
Su�ciently detailed requirements speci�cations, even
those written in prose, often lend themselves to rep-
resentation in this form. Once this representation is
obtained, one can apply mechanized formal techniques
to ensure that the operational requirements speci�ca-
tion is self-consistent and complete, that it represents
the customer's intentions, and that it satis�es required
system properties.

Assurance that a system speci�cation satis�es a crit-
ical set of properties is especially important for appli-
cations that must perform mission-critical operations
safely and securely. Equally important is assurance
that the system implementation conforms to the spec-
i�cation. One approach to obtaining such assurance
is incremental re�nement of the operational speci�ca-
tion into source code (or its hardware analog, a silicon
chip). Another approach uses the operational require-
ments speci�cation as the basis for generating sets of
test scenarios for an implementation. To provide con-
�dence that the scenarios test examples of all \pos-
sible" system behaviors, these scenarios must satisfy
some coverage criterion.

The SCR (Software Cost Reduction) requirements
method [14, 11] is a tabular formal method for speci-
fying the black-box behavior of a system, i.e., its op-
erational requirements. The use of SCR is supported
by the SCR* toolset [13, 10, 11] developed at NRL.
SCR* is designed to support engineers in the develop-
ment of real systems. Besides providing an editor for
creating SCR speci�cations, SCR* supports the anal-
ysis of SCR speci�cations with a wide range of tech-
niques, including consistency checking, simulation, in-
variant generation, model checking, and theorem prov-

1

ing. Analysis using SCR* is fast, easy, and, to the
extent possible, \push-button" (i.e., automatic) [11].
Engineers using SCR*'s push-button analyses do not
need specialized knowledge to use the analysis tech-
niques. SCR* also provides easy-to-understand feed-
back. Additional tools planned for the SCR* toolset
are a test set generator (now in the prototype stage)
and a tool to generate source code from speci�cations.

This paper reports on the application of SCR
to a subset of the requirements speci�cation of a
real Navy COMSEC (communications security) de-
vice, CD, based on the Programmable Embeddable
INFOSEC Product (PEIP) technology. The paper de-
scribes how SCR was used in a cost-e�ective manner to
create a high-quality SCR speci�cation for CD and to
prove that this speci�cation satis�es a set of security
properties and fails to satisfy one property. It illus-
trates how the SCR* analysis techniques both comple-
ment and support one another, and how one particu-
lar technique, the TAME [1, 2] interface to the PVS
[26] theorem prover can be used both to prove security
properties and discover property violations.

After reviewing the SCR method and the SCR*
toolset, Section 2 introduces PEIP and the COMSEC
Device CD. Section 3 describes the translation of a
prose requirements document for CD into an opera-
tional SCR speci�cation and the application of tools
in the SCR* toolset to the analysis of this speci�ca-
tion. Section 4 discusses our results, the utility of the
individual tools, and the interactions among the tools.
Finally, Section 5 discusses related work, and Section 6
presents our conclusions and future plans.

2 Background

2.1 The SCR Method

The SCR method (Software Cost Reduction) is a for-
mal method for specifying and analyzing the require-
ments of safety-critical control systems. Since its in-
troduction in 1978, the SCR requirements method has
been applied successfully to a wide range of critical sys-
tems (see, e.g., [14, 23, 7, 6, 22, 18]), including avionics
systems, space systems, telephone networks, and con-
trol systems for nuclear power plants.

An SCR requirements speci�cation describes both
the system environment, which is nondeterministic,
and the required system behavior, which is usually de-
terministic [13, 12]. In the SCR model, the system
environment and required system behavior are respec-
tively described by NAT and REQ, two relations of
the Four Variable Model [24]. NAT describes the nat-
ural constraints on the system, such as constraints im-
posed by physical laws and the system environment.
The system environment contains monitored quantities
that the system monitors and controlled quantities that
the system controls. REQ describes the required rela-
tion between the monitored and controlled quantities

that the system must enforce. The monitored and con-
trolled quantities are represented in the SCR model as
monitored and controlled variables. To specify REQ
concisely, SCR speci�cations also use two types of aux-
iliary variables, mode classes, whose values are modes,
and terms, both of which often capture historical in-
formation.

In the SCR model, the environment nondeterminis-
tically produces a sequence of input events, where an
input event signals a change in some monitored quan-
tity. The system described in an SCR speci�cation
is represented as an automaton|i.e., state machine|
that begins execution in some initial state and responds
to each input event in turn by changing state and by
producing zero or more output events, where an output
event is a change in a controlled quantity. In this rep-
resentation, the system behavior is assumed to be syn-
chronous: the system completely processes one input
event before the next input event is processed. The
system states are determined by the values assigned
to the system variables, i.e., the monitored variables,
controlled variables, mode classes, and terms. An SCR
speci�cation de�nes the set of initial states and the
transition relation of the automaton.

An important concept underlying the notion of a
system property to be satis�ed by a speci�cation is
reachability. A reachable state of the automaton either
is an initial state or can be reached from an initial state
by a �nite sequence of transitions. A reachable transi-
tion of the automaton is a transition from a reachable
state. A state invariant of the automaton is a predicate
on the state variables that evaluates to true in every
reachable state; a transition invariant is a predicate
on the variables of two states that evaluates to true

for the two states in every reachable transition. Our
experience with practical systems is that most critical
system properties can be represented as either state
invariants or transition invariants.

The transition relation of an SCR automaton is de-
�ned in terms of conditions and events, where a con-
dition is a predicate de�ned on a system state, and an
event is a predicate de�ned on two system states im-
plying that they di�er in the value of at least one state
variable. When the value of a variable changes, we say
that an event \occurs". The notation \@T(c)" denotes

an event, and is de�ned as @T(c)
def
= :c ^ c0, where

the unprimed condition c is evaluated in the current
state and the primed condition c0 is evaluated in the
next state. Informally, \@T(c)" means that condition c

becomes true and \@F(c)" means that c becomes false.
The notation \@T(c) when d", where c and d are con-
ditions, denotes a conditioned event, and is de�ned as

@T(c) when d
def
= :c ^ d ^ c0.

An SCR speci�cation contains a set of tables which
describe the state transitions, that is, how to compute
the values of individual variables in the next state.

2

Each controlled variable, term, or mode class has a
corresponding table. The table for a mode class is a
mode transition table, which maps a source mode and
an event to a destination mode. The table for any term
or controlled variable is either an event table, which
maps conditioned events to values of the variable in
the next state, or a condition table, which maps condi-
tions on the next state to values of the variable in the
next state. Examples of an event table and a condition
table as they appears in the SCR* speci�cation editor
are shown in Figures 1 and 2. For an example of a
(partial) mode transition table, see Figure 8 below.

Figure 1. Event table for cKeybank1Key1

Figure 2. Condition table for the controlled
variable cAlarmIndicator of CD.

Besides the tables for each variable, an SCR spec-
i�cation contains dictionaries of types, variable decla-
rations, constant declarations, environmental assump-
tions, and speci�cation assertions. The �rst four dic-
tionaries describe more about the the SCR automa-

ton being speci�ed. The speci�cation assertion dictio-
nary records the properties that the system designer
wishes the system to have. For CD, these properties
include the security requirements. Figure 3 shows part
of the speci�cation assertions dictionary for CD. An
important function of SCR* is to determine whether
the properties in the speci�cation assertions dictionary
are satis�ed by the operational speci�cation de�ned by
the other dictionaries and tables.

Figure 3. A portion of the specification asser-
tions dictionary for CD.

2.2 The SCR* Toolset
The SCR* toolset [13, 10, 11] is a set of software tools
developed by NRL to provide mechanized support for
the SCR method. In addition to a speci�cation editor
for creating and modifying a requirements speci�cation
and a dependency graph browser to display the depen-
dencies among the variables in the speci�cation, the
toolset includes an automated consistency checker to
detect type errors, missing cases, circular de�nitions,
and other types of application-independent errors; a
simulator to allow users to symbolically execute the
speci�cation to ensure that it captures their intent;
an interface to the model checker Spin [15] to detect
property violations; and an invariant generator that
computes state invariants from the tables describing
the state transitions. To provide formal underpinnings
for the tools and for the analysis techniques the tools
implement, a formal model has been developed to de-
�ne the semantics of SCR requirements speci�cations
[12, 13].

Several additional tools have been integrated with
SCR* by means of translators that transform the inter-
nal representation of an SCR speci�cation into the in-
put languages of the tools. These tools include TAME
(Timed Automata Modeling Environment) [1, 2], an
interface to the theorem prover PVS [26] that simpli-
�es using PVS to prove properties of automata models,
a validity checker [4] that automatically checks whether
a predicate over the variables of one or two states is a
state or transition invariant of an SCR speci�cation,
and a test set generator [8] that automatically gener-
ates test sets from an SCR speci�cation. Section 3
summarizes the results of applying SCR* tools for ver-
i�cation and validation to the SCR representation of
CD.

3

2.3 The PEIP COMSEC Device
PEIP (Programmable, Embeddable INFOSEC Prod-
uct) is a technology for building communication se-
curity (COMSEC) devices. Unlike most other com-
munication security devices, PEIP devices will contain
software as well as hardware. While the security com-
munity has signi�cant experience in providing a high
level of assurance that hardware COMSEC devices be-
have correctly, experience providing such assurance for
COMSEC devices containing software is rare.

CD (COMSEC Device) is a communications secu-
rity device, based on PEIP technology, which provides
cryptographic processing for a US Navy radio receiver.
CD will generate keystreams compatible with another
cryptographic device and will support multiple chan-
nels. Because it is programmable, CD will allow the
Navy to use more than one cryptographic algorithm.
Among other capabilities, CD can download associated
algorithms and keys into working storage, assign them
to designated communication channels, maintain the
association between an algorithm and its keys, clear
algorithms and keys from memory when required, and
generate keystreams.

The CD System Requirements document, referred
to below as the CD SRD, is a detailed prose document
describing the requirements for CD, including the re-
quired operating states and modes and the functional,
design, and implementation (e.g., materials and work-
manship) requirements. The requirements speci�ca-
tion in the CD SRD was designed to satisfy a large set
of security requirements that are required for certi�ca-
tion by the DoD organization that evaluates INFOSEC
devices and certi�es them for use.

For an informal prose document, we found the CD
SRD to be relatively complete, consistent, and precise,
with the exception of the descriptions of the functions
for generating keystreams and for cryptographic syn-
chronization which were intentionally left incomplete.
Our method detected minor inconsistencies in the de-
scription of required states and modes in the require-
ments document.

3 Applying SCR* to CD
This section discusses the translation of a subset of
the prose speci�cation provided by the CD develop-
ers into an SCR speci�cation and the application of
the tools described above to the SCR speci�cation. In
particular, we present the results of applying the SCR*
consistency checker, SCR* simulator, and several tools
that generate or verify properties of SCR speci�cations
and describe the future use of the SCR* testing tool
to generate test sets from the SCR CD speci�cation.
All examples showing results of SCR* analyses re
ect
properties of our SCR speci�cation of CD.

3.1 From Prose to SCR Requirements
The CD SRD is a traditional 2167A-style document.
The section entitled \System Requirements" describes

the requirements imposed on the behavior of the sys-
tem. The subsection \Operating States and Modes"
describes the system modes and transitions between
them, and the subsection \CD Functional Require-
ments" gives further details on mode transitions and
the functions that CD is required to perform. CD
Functional Requirements are organized by function,
where a function is a task that the system performs
(e.g., key load function, reset function, report status
function).

To develop the SCR speci�cation, we studied the
CD SRD, focusing on the constraints it imposed on
the required system behavior, and representing those
constraints using SCR constructs. The CD SRD was
su�ciently precise and complete about key and algo-
rithm management, modes of operation, and security
requirements relating to power, tampering, and ze-
roizing for us to capture the required behavior in the
SCR CD speci�cation. We obtained security proper-
ties by examining the SCR speci�cation and surmising
the goals of the required behavior and by interpreting
descriptions of functions in the CD SRD as security re-
quirements (as well as behavioral requirements). The
CD SRD intentionally did not contain su�cient precise
information about cryptographic synchronization and
generating keystreams for us to capture their behavior
in the SCR CD speci�cation. The CD project man-
ager has reviewed our set of security properties and
con�rmed that, except for one, they are reasonable se-
curity properties of CD.

Most of the e�ort spent in building the SCR CD
speci�cation took place over a nine-month period as
a background activity. The initial build of the spec-
i�cation took approximately one person-week. About
one additional person-week was devoted to re�ning and
completing the speci�cation. Aside from our use of the
consistency checker to �nd and correct errors, these ef-
forts are distinct from those reported in this paper ap-
plying SCR* simulation and formal analysis techniques
to the CD speci�cation.

Much of the CD SRD is consistent with the SCR
model of black-box requirements. Outputs (such as in-
dicator lights and status messages) and inputs (such
as the status of primary and backup power, data pro-
vided by the host, and positions of switches) �t the
SCR model well. CD's operating states and modes are
easily represented as an SCR mode machine.

However, there is much important CD behavior that
does not �t easily into this model. The CD SRD de-
scribes at great length the rules for loading algorithms
and keys, associating them with channels, and clearing
them from memory. Such rules, which concern man-
aging data in CD's memory, do not �t SCR's model
of black box requirements: Memory is internal to the
black box, whereas outside the black box, it is invisi-
ble. Since there is not enough information in the CD
SRD to specify the rules for generating the key stream,

4

which is the reason the Navy uses CD, much required
behavior that would be relevant and useful to reason
about cannot be captured with a straightforward ap-
plication of the SCR model. We resolve this dilemma
by representing the manner in which CD is required to
manage algorithms and keys in its memory as exter-
nally visible. The SCR CD speci�cation de�nes con-
trolled variables that represent the memory locations in
which the CD software can store algorithms and keys.

There are an unlimited number of algorithms and
keys that can be distributed among a number of al-
gorithm and key storage locations and a number of
channels. Since SCR does not yet have a capability
for conveniently and concisely specifying a number of
identical instances, the SCR speci�cation assumes that
there are at most two of any physical quantity that
can have more than one instance. Each of the two in-
stances is speci�ed separately. Thus, for example, the
SCR CD speci�cation includes a variable declaration
and a value function for each of two key banks and for
each of the two key storage locations in each key bank.
The speci�cation also assumes there can be at most
1,000 di�erent algorithms and 1,000 di�erent keys.

Another feature of the CD speci�cation that does
not �t the SCR model is the Built-in Test (BIT). SCR
views the Built-In Tests described in the CD SRD (and
in many other requirements documents) as a design for
determining the health of CD's security components,
rather than as a requirement. The SCR CD speci�-
cation replaces the full and background BITs by the
monitored variables mHealthyFull and mHealthyBack-
ground, which each denote the operational \health" of
CD's security-critical components. The BITs described
in the CD SRD are viewed as a design that should sat-
isfy these requirements.

The SCR CD speci�cation has one more mode than
the original. SCR adds an O� mode so that the system
is always in exactly one mode.

Our SCR speci�cation, which models a subset of
CD's complete operational requirements, contains 39
variables, speci�cally, 17 monitored variables, one
mode class, two terms, and 19 controlled variables.
Figure 4 shows the variable dependency graph for the
complete SCR speci�cation of CD. Variables are rep-
resented as boxes, and an arrow from one variable to a
second variable indicates that the �rst variable depends
on the second|or, more precisely, that the value of the
�rst variable in the next state depends on the value of
the second variable in either the current state or the
next state. The heavy lines are backarrows; the number
of backarrows re
ects the complexity of the interdepen-
dencies among the variables, which is also re
ected in
the complexities of the tables. Although this graph
has cycles, the SCR* consistency checker was used to
assure that there were no circular dependencies among
the \next-state" variables (see Section 3.2).

Figure 4. Full dependency graph for SCR CD.

3.2 Applying the Consistency Checker

The consistency checker analyzes a speci�cation for
consistency with the SCR requirements model. A form
of static analysis, consistency checking avoids the com-
putationally expensive activities of executing the spec-
i�cation and reachability analysis. The checks expose
syntax and type errors, variable name discrepancies,
unwanted non-determinism (called disjointness errors)
missing cases (called coverage errors), and circular def-
initions (i.e., cycles in the dependencies among next-
state variables). We designed the consistency checker
to support engineers focused on developing high as-
surance systems. The checks are fully automatic push-
button analyses that require no user input or guidance.
When an error is detected, the consistency checker fa-
cilitates error correction by providing detailed feedback
in the language of SCR. For some types of errors (e.g.,
non-determinism, missing cases), the checker will, in
addition to describing the error and highlighting where
in the speci�cation the error occurs, provide a coun-
terexample, a description of a situation that manifests
the error.

In developing the CD speci�cation, we frequently
used the consistency checker for \sanity" checks. All
of the checks but those for missing cases and non-
determinism execute quickly enough that it is useful
to invoke them many times during an editing session.
We used the more computationally expensive checks
for missing cases and non-determinism less frequently,
because checking the entire CD speci�cation for these
properties requires 5 to 9 minutes.

The table in Figure 5 provides a short sample of er-
rors reported by the consistency checker from the be-
ginning of work on formalizing the CD speci�cation in
SCR. Each row of the table lists the error reported by
the tool, what part of the speci�cation is highlighted
at user request, and our interpretation of the error.
The cycle among the next state dependencies occurred
while we were �rst trying to model in SCR certain com-

5

ii
Error Report SCR* Highlights Diagnosisii

Specification Assertion Dictionary expression In expression, an
(dictionary item aZeroKeysonTrouble): integer is illegally
Type ERROR: Assertion expression is not used as a boolean
a legal boolean in the Expression fieldii
smOperation Mode Transition Table: name of mode Events in transitions
Cycle Detection ERROR: Cycle #1: class in mode involving a mode class
Table smOperation uses mode class transition table introduce a cycle in
smOperation in the Name field; Function the next state variable
is smOperation Mode Transition Table dependenciesii
smOperation Mode Transition Table: two mode A disjointness error
Disjointness ERROR: Overlap between transition events is detected due to
row 8 column 1 and row 9 column 1 that are not the illegal cycle and a

disjoint missing variable definitioniicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 5. Consistency checker feedback.

plex mode transitions described in the CD SRD.

3.3 Simulating the CD Speci�cation

Veri�cation demonstrates that a speci�cation has cer-
tain useful properties (e.g., deterministic, safe, se-
cure). Although SCR* provides several veri�cation
tools (which we will describe later), the SCR* simula-
tor is, instead, a tool for validation. Validation, which
is especially important to users, demonstrates that the
system, if implemented to conform to the speci�cation,
can be used in the intended environment and will be
useful. It is typically di�cult to validate a system be-
fore it is built, because the people who have the ap-
plication knowledge required to judge the suitability
of the system in the intended environment often do
not have the skills required to read and analyze pre-
cise speci�cations. The SCR* simulator allows users
to evaluate the behavior of the speci�ed system before
it is built and without reading the SCR speci�cation.

Users can validate a system speci�ed by an SCR
speci�cation by running usage scenarios through the
SCR* simulator. The simulator's standard generic in-
terface presents the state of the execution in terms of
the values of the variables in the speci�cation. The sim-
ulator separately lists the values of the monitored vari-
ables, controlled variables, terms, and mode classes.
Each element of the usage scenario, a list of input
events, assigns a new value to one of the monitored
variables. When the simulator accepts an input event,
it updates the values of the dependent variables (i.e.,
controlled variables, terms, and mode classes) before
accepting the next input event. In addition to present-
ing the current state of the execution, the simulator
can present a history of the execution.

Because this generic interface is most suitable for
use by computer scientists and engineers, the simula-
tor also supports the rapid construction of front-ends
customized for particular applications. Instead of di-
rectly interacting with the values of variables in the
speci�cation, the user can interact with graphical rep-
resentations of the entities in the application domain.
E.g., instead of the simulator displaying the expression

cAlarmIndicator = on

to indicate to the user that an indicator labeled
ALARM is lit, the simulator displays a graphical repre-
sentation of a red light labeled ALARM. By interacting

with such front-ends, the user moves out of the world
of requirements speci�cation and into the world of his
application. Users who are expert in an application
can use the application-speci�c front-end to validate
the behavior captured by the speci�cation before the
system is built. They need not read the detailed SCR
speci�cation nor use the abstract generic simulator in-
terface. Additionally, the simulator reports when a
scenario violates speci�ed properties.

We found an application-speci�c front-end for CD
useful in interacting with the CD project manager. Af-
ter seeing a simulation of CD using the CD-speci�c
front-end (built in less than a day), the CD project
manager provided us with useful feedback on the SCR
speci�cation of the CD. Hence, evaluation of the CD
speci�cation through this front-end to the simulator al-
lowed a very e�ective use of a very scarce commodity,
the project manager's time.

3.4 Automatic Invariant Generation

The SCR* invariant generator is based on an algorithm
for generating state invariants from the functions de�n-
ing the dependent variables, i.e., variables other than
monitored variables. The algorithm computes invari-
ants for variables de�ned by mode transition tables,
event tables, and condition tables, and thus covers all
of the dependent variables. For a dependent variable
v taking values in a �nite set fa1; a2; : : : ; ang, the al-
gorithm generates for each ai an invariant of the form

(v = ai)) Ci;

where Ci is a predicate in the variables on which v de-
pends. When v can take values in a very large (even
in�nite) set, the hypotheses v = ai are replaced by
predicates de�ning a (�nite) partition on the range of v;
for example, when v has a numeric value, each predi-
cate will de�ne an interval. The appropriate intervals
can often be computed automatically from values with
which v is compared in the speci�cation.

Currently, only the part of the algorithm for gener-
ating invariants from a mode transition table is imple-
mented in SCR*. The full algorithm, which ultimately
will be implemented in SCR*, includes methods for
generating invariants from event tables and condition
tables and a strengthened method for mode transition
tables, and can be executed by hand.

The initial application of the automatic invariant
generator to the mode transition table for the CD mode
class smOperation yielded invariants that were unex-
pectedly weak. This led us to examine the mode tran-
sition table more closely and to correct the formulation
of several of the events leading to a transition. A typi-
cal invariant generated automatically from the revised
table is shown in Figure 6. After applying the auto-
matic invariant generator, other parts of the full invari-
ant generation algorithm, including the strengthened
method for mode transition tables and the method for
event tables, were applied by hand to tables in the

6

ii
No. Informal Formalii
7 In Configuration mode, smOperation = sConfiguration

the background is healthy and ⇒ mHealthyBackground AND
backup power is not overvoltage mBackupPower =/ overvoltageiicc

c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

Figure 6. A typical generated invariant for the
mode class smOperation.

speci�cation.

Although the automatically generated invariant
properties of a speci�cation are not the strongest pos-
sible invariants, they are often su�cient to establish
interesting safety properties [16]. Applying the invari-
ant generation algorithm to CD did not provide results
strong enough by themselves to establish the security
properties we wished to verify. However, the gener-
ated invariants played an extremely useful role: they
provided every auxiliary lemma we needed to complete
the proofs of all valid security properties that we inves-
tigated. Although there is no guarantee that this will
always happen, that it did happen for CD suggests that
applying automatic invariant generation is an impor-
tant �rst step in verifying a set of properties, particu-
larly since, once fully implemented in SCR*, generating
invariants will be a push-button technique.

In the case of CD, a total of �ve auxiliary invari-
ants were required in the proofs of the three (of seven)
valid properties of interest we studied that could not
be proved automatically using TAME (see Section 3.6)
or the SCR* validity checker (see Section 3.7). Of
these �ve invariants, two of which are shown in Fig-
ure 7, the �rst three, including invariant 1 in Figure 7,

ii
No. Informal Formalii
1 In Configuration mode, backup smOperation = sConfiguration

power is not overvoltage ⇒ mBackupPower =/ overvoltageii
5 If CD is in Off mode, smOperation = sOff

then key 1 in keybank 1 is 0 ⇒ cKeyBank1Key1 = 0iic
c
c
c
c
c
c

c
c
c
c
c
c
c

c
c
c
c
c
c
c

c
c
c
c
c
c
c

Figure 7. Example auxiliary invariants needed
in CD proofs.

are subsumed by invariants generated by the imple-
mented algorithm. For example, invariant 1 is sub-
sumed by invariant 7 in Figure 6, which follows from
the fragment of the mode transition table of CD in
Figure 8 describing the transitions into and out of the
mode sConfiguration. A fourth auxiliary invariant
was proved in TAME from the �rst three invariants;
however, this fourth invariant also follows immediately
from additional invariants proved by the strengthened
algorithm for mode transition tables (which takes the
�rst three invariants into account). A �fth invariant,
invariant 5 in Figure 7, follows from applying the al-
gorithm to the event table of the integer-valued vari-
able cKeyBank1Key1 (Figure 1), which generates the
invariant in the equivalent form:

cKeyBank1Key1 6= 0) smOperation 6= sOff

(note the use of a partition of the numeric domain of
cKeyBank1Key1 in the hypothesis).

Figure 8. Mode transition table fragment.

3.5 Model Checking Properties

When a software speci�cation is represented as an au-
tomaton, as in SCR, one can model check its prop-
erties. Model checking performs an exhaustive search
of some representation of the state space of the au-
tomaton. When there is a large number of state vari-
ables, and particularly when|as is common in software
speci�cations|the individual variables take values in
a large (even in�nite) set, the state space can become
extremely large, making direct exhaustive search of the
entire space di�cult or impossible. This is referred to
as the state explosion problem. The problem can be
alleviated by abstraction.

For SCR*, we have developed automatable abstrac-
tion methods that reduce the state space either by elim-
inating variables (variable restriction methods) irrele-
vant to a particular property, or by reducing the size
of their range of values (variable abstraction methods)
[11]. However, even with the use of abstraction, the
state space to be searched often remains too large to
search exhaustively. As a result, model checkers are
seldom used to verify that a particular property holds
for an automaton. Nevertheless, when a property does
not hold for the automaton, a partial search of the
state space can often �nd states that violate the prop-
erty. In addition to �nding states in violation, most
model checkers produce counterexamples in the form
of scenarios|sequences of events|that lead to the bad
state. Such counterexample scenarios help users un-
derstand the reasons for property violations, and how
to �x the speci�cation to eliminate them. Below, we
refer to counterexample scenarios simply as counterex-
amples.

For analyzing properties of an automaton, model
checking and theorem proving have complementary
strengths. In contrast to a model checker, a theo-

7

rem prover does not generate a counterexample when
a property does not hold. Instead, it generally hits
one or more dead-ends in its attempt to prove that the
property is an invariant. These dead-ends are in the
form of a transition of the automaton that does not (a
priori) preserve the property. The user of the theorem
prover must then determine whether the transition is
reachable in the automaton. It is sometimes possible
to prove that the transition is unreachable, usually by
showing that the �rst state in the transition pair vi-
olates a known invariant. When the property one is
trying to prove does not hold, there will be at least
one problem transition for which this cannot be done.
However, to demonstrate that the property does not
hold, one wishes to generate a counterexample. This
cannot be done using the theorem prover itself, but re-
quires either user inspection or support from another
tool such as a model checker.

Therefore, applying a model checker to check the
validity of a property before trying to establish the
property with a theorem prover is generally a good
screening strategy, especially since model checking is
essentially push-button. If the property is false, the
model checker may directly produce a counterexample
and save the e�ort of attempting to prove a property
that does not hold and then generating a full coun-
terexample from a dead-end in a proof. In checking
security properties for CD, we followed this strategy.

Some example security properties that the SCR CD
speci�cation satis�es are shown in Figure 9. Before we

ii
No. Informal Formalii
1 If CD is tampered with, then @T(mTamper)

key 1 in keybank 1 is zeroized ⇒ cKeyBank1Key1′ = 0ii
2 No key can be stored in location 1 cKeyBank1Key1 =/ 0

of keybank 1 before an algorithm ⇒ cAlgStoreSegment1 =/ 0
has been loaded into the first location
of algorithm storage segment 1ii

3 If backup power has an undervoltage @T(mBackupPower = undervoltage)
when primary power is unavailable, WHEN mPrimaryPower = unavailable
the CD enters either Alarm mode or ⇒ smOperation′ = sAlarm
Off mode OR smOperation′ = sOffiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 9. Sample true properties for SCR CD.

tried to prove these or any CD security property with
TAME (see Section 3.6), we �rst used the Spin model
checker to look for violations of the property. For each
property, we used the SCR* tool to automatically ex-
tract an abstraction of the CD speci�cation based on
the property of interest; this method removes all vari-
ables not relevant to determining the validity of the
property (i.e., variable restriction from [11]). Then, by
hand, we further abstracted the speci�cation by limit-
ing the range of values that certain variables could as-
sume (i.e., variable abstraction from [11]). In our CD
study, the reduced variable dependency graphs of the
abstractions for di�erent properties varied very little.
Figure 10 shows a typical reduced dependency graph,
in which the total number of variables has been reduced
by 28%, from 39 to 28.

We used Spin several times to analyze each property,

Figure 10. Dependency graph for a typical ab-
stract CD specification for model checking.

adjusting Spin's parameters in an attempt to explore
the largest possible subset of the reachable state space.
The discovery of property violations led to a few cor-
rections in the formulation of some of the properties.
We were unable to �nd any violations of the proper-
ties subsequently proved by TAME. However, since we
were not able to search the complete state space of any
of the abstract speci�cations, theorem proving was re-
quired to establish the property as an invariant. The
importance of the theorem proving phase was demon-
strated when we were able to establish with the help
of a theorem prover that one property for which Spin
was unable to �nd a violation is not an invariant (see
Sections 3.6 and 3.7).

3.6 Checking Properties with TAME

The tool TAME provides an interface to PVS for prov-
ing properties of automata models. TAME's goal is to
reduce the human e�ort required in using PVS to spec-
ify these automata models and to prove state invariant
properties for the models. TAME was originally de-
signed to specify and reason about Lynch-Vaandrager
(LV) timed automata [20] but has been adapted to
I/O automata [19] and the automata model underlying
SCR [2]. TAME provides approximately twenty spe-
cialized strategies that implement proof steps mimick-
ing the high-level proof steps typically used by humans
in proving invariant properties. Experience has shown
that for automata models whose state variables have
simple types (such as numerical, boolean, or enumer-
ated types), nearly all state invariants can be proved
using the TAME steps exclusively.

We have begun integrating TAME into SCR* by
developing a scheme for translating the tables of an
SCR speci�cation into a TAME speci�cation. A pro-
totype automatic SCR-to-TAME translator has been
implemented [2]. Based partly on our experience with
CD, our translation scheme has been re�ned to produce

8

more e�cient TAME encodings of SCR speci�cations,
i.e., encodings that increase the e�ciency of proofs
of properties of an SCR speci�cation from its TAME
representation. The improvements in the translation
scheme take advantage of information from the SCR*
consistency checker. Speci�cally, disjointness checks
are used to determine the most e�cient representation
in TAME of the tables for the variables, and new-state
dependencies among the variables are used to �nd the
most e�cient representation of the transition relation.

Experience has shown that for many SCR
automata|in particular, those not involving timing
constraints or other complexities such as tolerances for
controlled quantities|a single TAME strategy can au-
tomatically prove many state invariants. As indicated
in Section 2.1, most invariant properties of interest for
an SCR automaton are either properties of a single
state of the automaton (one-state properties) or prop-
erties of the pair of states in a transition of the au-
tomaton (two-state properties).

Technically, both one-state properties and two-state
properties can be formulated as state invariants. For a
one-state property, this is obvious. A two-state prop-
erty is expressed as an invariant of a given state using
universal quanti�cation of the property over all possi-
ble (enabled automaton action, successor state) pairs
for the given state. One-state properties must either
be proved by induction or by appealing to other one-
state properties. Using induction, a proof is broken
down into a base case, in which the property is shown
to hold for every initial state, and a case for each au-
tomaton action (i.e., input event), in which the prop-
erty is shown to be preserved by the corresponding
state transition. Unlike one-state properties, two-state
properties are seldom proved by induction, since the
transitions possible from any given state seldom have
any connection to the transitions possible from one of
its successor states. Rather, two-state properties are
normally proved by reasoning directly about the tran-
sition relation of the SCR automaton.

In TAME, the strategy SCR INDUCT PROOF per-
forms the standard parts of an induction proof for a
one-state property, and SCR DIRECT PROOF does
the same for a two-state property. A universal in-
variant proof strategy is obtained by probing the
form of the invariant to see whether it is a one-
state or two-state property, and then applying either
SCR INDUCT PROOF or SCR DIRECT PROOF as
appropriate. Like the SCR-to-TAME translation
scheme, the strategies SCR INDUCT PROOF and
SCR DIRECT PROOF have been re�ned to signi�-
cantly improve their average e�ciency. For example,
TAME's proof by induction of property 3 in Figure 9
originally took about 7900 seconds; with our improved
strategies, that time has been reduced to about 400
seconds. In addition, the (non-induction) TAME proof
of property 2 in Figure 9, which originally took about

380 seconds, now requires only 37 seconds. Because of
the initial long proof times, the �rst three properties
in Figure 9 took a few days to prove. Once the auto-
matic proof strategies were re�ned, the last three prop-
erties in Figure 9 took less than an hour to prove. The
fourth property took longer|about 2 days|because
we needed to discover and prove two layers of auxiliary
invariants needed in its proof. This time would have
been greatly reduced if the full invariant generation
algorithm (see Section 3.4) had been automated.

When TAME's universal invariant strategy fails to
complete the proof of an invariant, there are two possi-
ble reasons: either the invariant is false, or additional
invariants are needed in the proof. Associated with
every \dead-end" in the proof is a problem transi-
tion. For one-state properties, this is the transition
of the action case in the induction proof in which the
dead-end appears. For two-state properties, this is
the transition from the given state via some enabled
automaton action to the successor state; the strat-
egy SCR DIRECT PROOF produces only dead-ends
in which the action is known, and hence for determin-
istic SCR speci�cations, the successor state (in terms of
the given state) is known. TAME provides several anal-
ysis strategies that cause PVS to display the details of
any problem transition. Eventually, this PVS display
will be automatically translated into SCR notation, so
that an SCR* user will not have to master the alter-
nate PVS notation. Once the details of the problem
transition are understood, the user can decide whether
the transition is legal|in which case, the property is
false|or whether it is illegal, either because it would
violate some two-state property, or because one or the
other of the states in the transition would violate some
one-state property.

Applying abstraction to a speci�cation is less criti-
cal for theorem proving than for model checking. Since
a theorem prover can reason about abstract values, re-
ducing the range of a variable using variable abstrac-
tion results in little or no improvement in the number
of cases the theorem prover must consider. However,
eliminating variables can reduce both the number of
cases and the complexity of reasoning about state tran-
sitions. Therefore, as we did with model checking, we
applied variable restriction to the speci�cation prior to
undertaking the proof of any property in TAME. Since
the abstractions for the individual properties di�ered
very little, we used the same abstraction for all.

Applying the automatic invariant strategy of TAME
to seven proposed properties for CD resulted in the au-
tomatic proof of four of these properties. For two of
the remaining properties, an auxiliary invariant was
proposed, proved automatically, and then applied to
complete the proof. For example, property 1 in Fig-
ure 9 requires an appeal to invariant 5 in Figure 7 in
its proof. For the third remaining proposed property,
property 3 in Figure 9, an auxiliary invariant was pro-

9

posed that completed the proof. However, applying
the automatic proof strategy to the auxiliary invari-
ant resulted in several dead-ends, and the proposal of
three further auxiliary invariants. These three new in-
variants were then proved automatically.

All auxiliary invariants required in the proofs of the
three CD properties which TAME did not prove au-
tomatically were generated either by the automatic in-
variant generator or by simple general extensions to the
invariant generation algorithm. Thus, once the invari-
ant generator is extended and communication between
the invariant generator and TAME through updates to
the SCR speci�cation is made possible, it will be pos-
sible to further extend the class of invariant properties
that can be proved automatically using TAME. Note
that any property that is not a true state invariant will
result in one or more dead-ends when TAME's auto-
matic invariant strategy is applied. While TAME sup-
ports interactive use to complete the proofs of invari-
ants that do not prove automatically, the substantial
e�ort that can be required for interactive involvement
suggests that it is best to use completely automatic
tools such as model checkers �rst to uncover errors in
the formulation of properties before applying a general-
purpose theorem prover, e.g., through TAME.

TAME also succeeded in �nding several (14) prob-
lem transitions for a proposed CD property, shown
in Figure 11, for which Spin was unable to produce

iii
Informal Formaliii

If CD is in Alarm mode, then smOperation = sAlarm
key 1 in keybank 1 is 0 ⇒ cKeyBank1Key1 = 0iiicc

c
c
c

cc
c
c
c

cc
c
c
c

Figure 11. A property false for SCR CD.

a counterexample. Some intelligent exploration using
the SCR* simulator led to the discovery of a counterex-
ample leading to one of these transitions, thus estab-
lishing that the property does not hold in our SCR
speci�cation of the CD. Examination of the feedback
from TAME shows that there are no obvious invariants
that forbid the other problem transitions, so that it is
likely that they also correspond to counterexamples.

3.7 Applying the Validity Checker

The SCR* validity checker [4] checks the validity of
(�rst-order) one-state or two-state properties directly
by using an initial term-rewriting phase followed by ap-
plication of a decision procedure that combines the use
of BDDs (binary decision diagrams) for propositional
formulae with a constraint solver for simple integer
arithmetic formulae (Presburger formulae). The vari-
able ordering heuristic for the BDDs has been re�ned
to be particularly e�cient for SCR speci�cations. The
validity checker can also perform an induction proof of
a property by �rst applying a preprocessor to gener-
ate the appropriate base and induction cases and then
applying the direct method to the generated cases.

A prototype translator of SCR speci�cations into
input for the validity checker has been built, and the
validity checker has been applied to many of the same
examples to which TAME has been applied, including
the CD properties (after abstraction, as with TAME).
The run time required by the validity checker to check
the validity of the CD properties was about half the
total time taken to run the TAME proofs. For the
false property in Figure 11, the validity checker pro-
duced a problem transition that was a special case of
the one found by TAME that was shown to correspond
to a real counterexample, and was in fact the problem
transition for which the SCR* simulator was used to
discover a corresponding counterexample. Thus, in the
same manner as TAME, the validity checker helped
to demonstrate that the property is invalid. Unlike
TAME, the validity checker cannot be used interac-
tively. Therefore, the CD properties whose proofs re-
quired auxiliary invariants were checked after �rst in-
cluding all necessary auxiliary invariants as assump-
tions, rather than by interactively invoking an analog
of TAME's APPLY INV LEMMA strategy.

Thus, the validity checker can provide an e�cient
�rst screening for invariance for any property of an
automaton that involves only propositional logic, sim-
ple integer constraints, and universal quanti�cation
over the states. An extension to handle simple con-
straints over the rational numbers is planned. To
mechanically check the validity of properties involv-
ing non-linear numerical constraints, numerical con-
straints over real numbers, properties whose proofs re-
quire types of higher-order reasoning other than in-
duction over reachable states, or properties otherwise
requiring interactive, user-guided proofs, access to a
general-purpose theorem prover (such as PVS through
TAME) is required. The current SCR* consistency
checker [13] successfully analyzes approximately 95% of
the disjointness and coverage checks in speci�cations,
but, unlike the validity checker, has limited ability to
evaluate linear integer constraints. A future version
of the validity checker will eventually be used to per-
form these checks and is expected to improve on this
percentage.

3.8 Generating Test Sets for CD

Applying the formal techniques described above will
produce very high-quality requirements speci�cations.
Although such high-quality requirements speci�cations
are valuable, the ultimate objective of the software
development process is to produce high-quality soft-
ware, software that satis�es its requirements. To weed
out software errors and to convince customers that the
software performance is acceptable, the software needs
to be tested. An enormous problem, however, is that
software testing, especially of safety-critical systems, is
extremely costly and time-consuming. It has been esti-
mated that current testing methods consume between
40% and 70% of the software development e�ort [3].

10

One bene�t of the SCR method is that the high-
quality speci�cation produced by the method can play
a valuable role in software testing. Recently, we de-
veloped an automated technique [8] that constructs a
suite of test sets from an SCR requirements speci�ca-
tion. (Each test set is a sequence of system inputs in
which each input is coupled with the required system
response, i.e., the required system outputs.) To en-
sure that the test sets \cover" the set of all possible
system behaviors, our technique organizes all possible
system executions (i.e., traces) into equivalence classes
and builds one or more test sets for each class. These
test sets can then be used to automatically evaluate
the implementation software. By eliminating the hu-
man e�ort needed to build and to run the test sets,
such an approach can reduce both the enormous cost
and the signi�cant time and human e�ort associated
with current testing methods.

Our technique uses a model checker to construct the
suite of test sets from the requirements speci�cation.
It does so by using the requirements speci�cation both
to generate a valid sequence of inputs and as an oracle
that determines the required system response, i.e., the
set of outputs the system is required to generate for
each input event. To obtain a valid sequence of inputs,
the input sequence is constrained to satisfy the condi-
tions in the environmental assumptions dictionary of
the SCR requirements speci�cation.

We have built a prototype tool in Java that auto-
matically translates an SCR speci�cation into the lan-
guage of either of two model checkers, executes the
model checker to build the test sets, analyzes its out-
puts, and �nally produces a �le containing the gener-
ated test sets. Our prototype tool has been applied to
a number of speci�cations, including a moderate size
speci�cation (containing 55 variables) of a component,
WCP1, of a contractor-speci�ed weapons system [11].
The time needed to construct the test sets was short,
varying from a minute or two for small speci�cations
to eight minutes for the WCP1 speci�cation. The tool
generated between three and ten test sets per speci-
�cation. For the moderate-sized WCP1 speci�cation,
the tool generated 10 test sets, each containing from 2
to 1309 input events. Given the tool's early success in
constructing test sets e�ciently, we expect that apply-
ing the tool to the CD speci�cation should be equally
successful. The CD project manager has expressed sig-
ni�cant interest in using test sets generated by our tool
to test the CD software and other related software.
Hence, the next crucial step in our study is to apply
the testing tool to the CD requirements speci�cation.

4 Discussion

4.1 Applying Many Formal Techniques
This study illustrates the value and relatively low cost
of providing assurance that a COMSEC device is se-
cure by developing a formal speci�cation of its behav-

ior and applying a wide range of analysis techniques
to that speci�cation. Each individual technique can
provide feedback useful in developing a correct opera-
tional speci�cation, formalizing its desired properties,
or checking whether the speci�cation satis�es the prop-
erties. In the CD study, the process of formal speci�ca-
tion and the associated consistency checks revealed our
need for an additional mode (sOff) and some instances
of missing cases in the speci�cation. The fact that the
invariants initially produced by the invariant generator
were not as strong as expected revealed that several of
the events in our initial version of the mode transi-
tion table were formulated incorrectly. Model checking
was also useful in improving the formulation of proper-
ties. Finally, theorem proving not only established the
validity of many properties but was helpful in discov-
ering a counterexample for one property. The reason
that this property is not true for our SCR represen-
tation of the CD is that the prose document does not
state explicitly all the implications of being in Alarm
mode. This illustrates the bene�t of translating a prose
speci�cation into a formal language such as SCR, and
con�rms an observation of Easterbrook and Callahan
[6]: inadvertent omissions and the vagueness inherent
in prose speci�cations are exposed both by the pro-
cess of translating prose into a formal speci�cation and
by the application of analysis techniques to the formal
speci�cation.

There are several additional bene�ts of using many
techniques. First, one can select the cheapest, most
e�cient technique for each type of analysis. Second,
results established by techniques that are less costly in
time and human e�ort can be used to make the ap-
plication of more costly techniques more e�cient. For
example, results from the consistency checking phase
can be used to make the encoding of the speci�cation
for a theorem prover more e�cient, errors found in
simulation can lead to corrections in the speci�cation
prior to developing formal proofs, counterexamples to
properties found by model checking can prevent time
wasted in trying to prove invalid properties interac-
tively, and automatically generated invariants can be
useful lemmas in establishing properties using a theo-
rem prover. Finally, though individual analysis tech-
niques have particular strengths and weaknesses, with
many techniques available, one can use the strengths
of one to compensate for the weaknesses of another.
For example, a model checker has the ability to pro-
vide a counterexample when it discovers that a prop-
erty is invalid, something a theorem prover cannot do.
However, for software speci�cations, the state space is
frequently too large to examine exhaustively to assure
that there are no counterexamples, and thus theorem
proving techniques are needed for establishing that a
property is valid.

The bene�t derived from applying the entire suite
of analysis techniques in SCR* to a speci�cation can

11

be increased by extending the automated support for
several techniques and by providing automated sup-
port for the communication of information between the
tools. The full invariant generation algorithm requires
implementation. Both the SCR* validity checker and
TAME require automated support for building coun-
terexamples when a proof fails. The ability to com-
municate invariant properties established by one anal-
ysis technique to the tools supporting other techniques
would, for example, permit TAME to make direct use
of lemmas created by the invariant generator.

4.2 Handling Complex Speci�cations
As noted in Section 3.1, our SCR speci�cation of CD
has 39 variables, and the relationships among these
variables is complex. In any state after the initial state,
the monitored variable mHostCommand can take one
of 17 values, and therefore, in any state of the CD,
there are 16 possible input events involving changes in
this variable. In addition, there are 17 other input vari-
ables. As a result, the mode transition table is large,
involving 55 events to de�ne 25 mode transitions, and
many event tables in the speci�cation are also large:
the average number of events per table is 8, with the
largest table containing 16 events.

In spite of this complexity, the total time taken in
this study to develop and analyze the SCR CD spec-
i�cation was approximately one person-month.1 As
noted above, formalizing the speci�cation of CD in
SCR, including using feedback from automatic invari-
ant generation to correct the speci�cation, took only
two person-weeks, and even the most complex auto-
mated consistency checks ran in minutes. The graphi-
cal front-end for simulation of CD was constructed in
one day. Improvements to formulation of the proper-
ties based on feedback from the model checker took
only a few days. The analysis techniques for prop-
erties underwent signi�cant improvement during this
case study, and as a result, analyzing a property with
these techniques now takes at most a few minutes, and
sometimes only a few seconds. The most expensive
part of the analysis of a property is analyzing dead-
ends to discover needed auxiliary invariants or coun-
terexamples. SCR*'s tool for automatic invariant gen-
eration has the potential to alleviate the problem of
discovering helpful auxiliary invariants.

5 Related Work
Other mechanized formal methods in which a system
is speci�ed as an automaton include RSML [9] and the
NRL Protocol Analyzer [21]. RSML has many simi-
larities to SCR: RSML speci�cations include a set of
tables, and there is automated support for checking
consistency and a version of completeness (called d-
completeness). There are also important di�erences.

1Some additional time was taken to make improvements
in some of the SCR* analysis techniques inspired by the CD
example.

RSML explicitly supports speci�cation features, such
as hierarchical states and local variables, that are not
explicitly supported in SCR (though similar e�ects can
be accomplished using SCR). The AND/OR tables in
RSML specify details of transitions, while SCR tables
specify how dependent state variables are updated. Be-
cause an automaton has many more transitions than
state variables, this means that an RSML speci�cation
of a system contains many more tables than an SCR
speci�cation of the same system. Automated support
for the analysis of speci�cation properties beyond con-
sistency and completeness is not yet extensive. How-
ever, RSML has been successfully applied to �nding
errors in the speci�cation of a complex real life avion-
ics system: the Tra�c alert and Collision Avoidance
System II (TCAS II).

The NRL Protocol Analyzer is a tool for proving se-
curity properties of cryptographic protocols. The en-
vironment in which a protocol operates, including the
participants in the protocol, is represented as an au-
tomaton. The Analyzer performs an exhaustive search
of some superset of the reachable states of the automa-
ton, looking for all paths to some given insecure state.
The user of the Analyzer �rst proves lemmas that help
to restrict the superset of the reachable states to a set
amenable to exhaustive search. The extent to which
SCR* can be usefully applied to the same problem do-
main is a topic for future study.

Other work whose goal is to provide high assur-
ance for security devices includes [25, 17]. Refer-
ence [25] describes the methodology used in devel-
oping another COMSEC device: the External COM-
SEC Adaptor (ECA). The development, from mod-
eling the device through implementing and verifying
its design, was done using the high-level SCR method.
The operational requirements were speci�ed using SCR
tables, and the critical requirements model|the de-
sired properties|was speci�ed using the Communicat-
ing Sequential Processes language CSP. The develop-
ment involved both formal and informal transitions be-
tween stages, with some automated support from an-
other mechanized theorem prover. Reference [17] de-
scribes the design and correctness assurance argument
for a device to prevent unauthorized use of a work-
station. The assurance argument is made entirely on
paper. However, the design should be amenable to
speci�cation and veri�cation using the SCR* toolset.

6 Conclusions and Future Work
An important question which this case study investi-
gated is whether it is feasible, low-cost, and of practical
value to apply formal methods to establish important
properties of operational requirements speci�cations of
communications security devices such as CD. Our re-
sults have been encouraging. By using the mechanized
formal methods and techniques in the toolset SCR*,
we were able to formalize the CD speci�cation and

12

establish speci�cation properties, including both com-
pleteness and consistency (by applying coverage and
disjointness checks) and several desired security prop-
erties, with approximately one person-month of e�ort.
We plan to continue this work by specifying additional
features of CD such as the cryptographic state, and
re-applying SCR* to the extended speci�cation and to
new properties involving the additional features.

Various improvements and enhancements to the
SCR* toolset are planned. For increased e�ciency
and portability, the toolset is being ported to Java.
Planned improvements include increasing the interop-
erability of the tools by automating communication be-
tween them via updates managed by the speci�cation
editor, and improvements in the user feedback concern-
ing possible counterexamples from the SCR* validity
checker and from TAME. Planned extensions include
implementation of the full invariant generation algo-
rithm and addition of a tool to generate Java code from
speci�cations.

Acknowledgements
We wish to thank Stanley Chincheck and Thomas
Sasala for providing us with their prose speci�cation
for CD, and both Stan and Tom and our colleague
Bruce Labaw for many helpful discussions. Our col-
league Ralph Je�ords executed by hand those parts
of the invariant generation algorithm that are not yet
mechanized. Our colleagues Ramesh Bharadwaj and
Steven Sims applied the SCR* validity checker to the
CD properties, and Ramesh Bharadwaj discovered a
counterexample corresponding to the problem transi-
tion found by this tool for the false property described
above, thus also providing a counterexample for one of
the problem transitions found by TAME. Stuart Faulk,
Ralph Je�ords, and Ramesh Bharadwaj gave us helpful
comments on early versions of this paper.

References

[1] M. Archer and C. Heitmeyer. Mechanical veri�cation of
timed automata: A case study. In Proc. 1996 IEEE
Real-Time Technology and Applications Symp. (RTAS'96),
pages 192{203. IEEE Computer Society Press, 1996.

[2] M. Archer, C. Heitmeyer, and S. Sims. TAME: A PVS inter-
face to simplify proofs for automata models. In Proc. User
Interfaces for Theorem Provers 1998 (UITP '98), Eind-
hoven, Netherlands, July 1998.

[3] B. Beizer. Software Testing Techniques. Van Nostrand
Reinhold, 1983.

[4] R. Bharadwaj and S. Sims. Salsa: Combining decision pro-
cedures for fully automatic veri�cation. Draft.

[5] B. W. Boehm. Software Engineering Economics. Prentice-
Hall, Englewood Cli�s, NJ, 1981.

[6] S. Easterbrook and J. Callahan. Formal methods for veri�-
cation and validation of partial speci�cations: A case study.
Journal of Systems and Software, 1997.

[7] S. R. Faulk, J. Brackett, P. Ward, and J. Kirby, Jr. The
CoRE method for real-time requirements. IEEE Software,
9(5):22{33, Sept. 1992.

[8] A. Gargantini and C. Heitmeyer. Automatic generation of
tests from requirements speci�cations. In Proc. ACM 7th
Eur. Software Eng. Conf. and 7th ACM SIGSOFT Symp.
on the Foundations of Software Eng. (ESEC/FSE99),
Toulouse, FR, Sept. 1999.

[9] M. P. E. Heimdahl and N. G. Leveson. Completeness and
consistency in hierarchical state-based requirements. IEEE
Transactions on Software Engineering, 22(6):363{377, June
1996.

[10] C. Heitmeyer, J. Kirby, and B. Labaw. Tools for for-
mal speci�cation, veri�cation, and validation of require-
ments. In Proc. 12th Annual Conf. on Computer Assurance
(COMPASS '97), Gaithersburg, MD, June 1997.

[11] C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and
R. Bharadwaj. Using abstraction and model checking to de-
tect safety violations in requirements speci�cations. IEEE
Trans. on Softw. Eng., 24(11):927{948, Nov. 1998.

[12] C. L. Heitmeyer, R. D. Je�ords, and B. G. Labaw. Tools for
analyzing SCR-style requirements speci�cations: A formal
foundation. 1999. Draft.

[13] C. L. Heitmeyer, R. D. Je�ords, and B. G. Labaw. Auto-
mated consistency checking of requirements speci�cations.
ACM Transactions on Software Engineering and Method-
ology, 5(3):231{261, April{June 1996.

[14] K. Heninger, D. L. Parnas, J. E. Shore, and J. W. Kallan-
der. Software requirements for the A-7E aircraft. Technical
Report 3876, Naval Research Lab., Wash., DC, 1978.

[15] G. J. Holzmann. Design and Validation of Computer Pro-
tocols. Prentice-Hall, 1991.

[16] R. Je�ords and C. Heitmeyer. Automatic generation of state
invariants from requirements speci�cations. In Proc. 6th
International Symposium on the Foundations of Software
Engineering (FSE-6), Orlando, FL, November 1998.

[17] C. E. Landwehr. Protecting unattended computers without
software. In Proc. Thirteenth Ann. Computer Security Ap-
plications Conf., pages 274{283, San Diego, CA, December
1997.

[18] R. R. Lutz and H.-Y. Shaw. Applying the SCR* require-
ments toolset to DS-1 fault protection. Technical Report
JPL-D15198, Jet Propulsion Laboratory, Pasadena, CA,
Dec. 1997.

[19] N. Lynch and M. Tuttle. An introduction to Input/Output
automata. CWI-Quarterly, 2(3):219{246, September 1989.
Centrum voor Wiskunde en Informatica, Amsterdam, The
Netherlands.

[20] N. Lynch and F. Vaandrager. Forward and backward sim-
ulations { Part II: Timing-based systems. Information and
Computation, 128(1):1{25, July 1996.

[21] C. Meadows. The NRL protocol analyzer: An overview.
Journal of Logic Programming, 26(2):113{131, 1996.

[22] S. Miller. Specifying the mode logic of a
ight guidance sys-
tem in CoRE and SCR. In Proc. 2nd Workshop on Formal
Methods in Software Practice (FMSP'98), 1998.

[23] D. L. Parnas, G. Asmis, and J. Madey. Assessment of safety-
critical software in nuclear power plants. Nuclear Safety,
32(2):189{198, April{June 1991.

[24] D. L. Parnas and J. Madey. Functional documentation
for computer systems. Science of Computer Programming,
25(1):41{61, Oct. 1995.

[25] C. N. Payne, A. P. Moore, and D. M. Mihelcic. An expe-
rience modeling critical requirements. In Proc. COMPASS
'94, pages 245{256, Gaithersburg, MD, June 1994. IEEE
Press.

[26] N. Shankar, S. Owre, and J. Rushby. The PVS proof
checker: A reference manual. Technical report, Computer
Science Lab., SRI Intl., Menlo Park, CA, 1993.

13

